Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae, which compose larger spheroidal structures named spherulites.[1] Polymers can crystallize upon cooling from the melt, mechanical stretching or solvent evaporation. Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, thus crystallized polymers are often called "semicrystalline". The properties of semicrystalline polymers are determined not only by the degree of crystallinity, but also by the size and orientation of the molecular chains.
Contents |
Polymers are composed of long molecular chains which form irregular, entangled coils in the melt. Some polymers retain such a disordered structure upon freezing and thus convert into amorphous solids. In other polymers, the chains rearrange upon freezing and form partly ordered regions with a typical size of the order 1 micrometer.[2] Although it would be energetically favorable for the polymer chains to align parallel, such alignment is hindered by the entanglement. Therefore, within the ordered regions, the polymer chains are both aligned and folded. Those regions are therefore neither crystalline nor amorphous and are classified as semicrystalline. Examples of semi-crystalline polymers are linear polyethylene (PE), polyethylene terephthalate PET polytetrafluoroethylene (PTFE) or isotactic polypropylene (PP).[3]
Whether or not polymers can crystallize depends on their molecular structure – presence of straight chains with regularly spaced side groups facilitates crystallization. For example, crystallization occurs very much easier in isotactic than in the atactic polypropylene form. Atactic polymers crystallize when the side groups are very small, as in polyvinyl and don't crystallize in case of large substituents like in rubber or silicones.[3]
Nucleation starts with small, nanometer-sized areas where as a result of heat motion some chains or their segments occur parallel. Those seeds can either dissociate, if thermal motion destroys the molecular order, or grow further, if the grain size exceeds a certain critical value.[4][3]
Apart from the thermal mechanism, nucleation is strongly affected by impurities, dyes, plasticizers, fillers and other additives in the polymer. This is also referred to as heterogeneous nucleation. This effect is poorly understood and irregular, so that the same additive can promote nucleation in one polymer, but not in another. Many of the good nucleating agents are metal salts of organic acids, which themselves are crystalline at the solidification temperature of the polymer solidification.[4]
Crystal growth is achieved by the further addition of folded polymer chain segments and only occurs for temperatures below the melting temperature Tm and above the glass transition temperature Tg. Higher temperatures destroy the molecular arrangement and below the glass transition temperature, the movement of molecular chains is frozen.[5] Nevertheless, secondary crystallization can proceed even below Tg, in the time scale of months and years. This process affects mechanical properties of the polymers and decreases their volume because of a more compact packing of aligned polymer chains.[3][6]
The chains interact via various types of the van der Waals forces. The interaction strength depends on the distance between the parallel chain segments and it determines the mechanical and thermal properties of the polymer.[7]
The growth of the crystalline regions preferably occurs in the direction of the largest temperature gradient and is suppressed at the top and bottom of the lamellae by the amorphous folded parts at those surfaces. In case of strong gradient, the growth has a unidirectional, dendritic character.[8] However, if temperature distribution is isotropic and static then lamellae grow radially and form larger quasi-spherical aggregated called spherulites. Spherulites have a size between about 1 and 100 micrometers[2] and form a large variety of colored patterns (see, e.g. front images) when observed between crossed polarizers in an optical microscope, which often include the "maltese cross" pattern and other polarization phenomena caused by molecular aignment within the individual lamellae of a spherullite.[1][4][3]
The above mechanism considered crystallization from the melt, which is important for injection molding of plastic components. Another type of crystallization occurs upon extrusion used in making fibers and films.
In this process, the polymer is forced through, e.g., a nozzle that creates tensile stress which partially aligns its molecules. Such alignment can be considered as crystallization and it affects the material properties. For example, the strength of the fiber is greatly increased in the longitudinal direction, and optical properties show large anisotropy along and perpendicular to the fiber axis. Polymer strength is increased not only by extrusion, but also by blow molding, which is used in the production of plastic tanks and PET bottles.[7] Some polymers which do not crystallize from the melt, can be partially aligned by stretching.[9]
Polymers can also be crystallized from a solution or upon evaporation of a solvent. This process depends on the degree of dilution: in dilute solutions, the molecular chains have no connection with each other and exist as a separate polymer coils in the solution. Increase in concentration which can occur via solvent evaporation, induces interaction between molecular chains and a possible crystallization as in the crystallization from the melt.[10] Crystallization from solution may result in the highest degree of polymer crystallinity. For example, highly linear polyethylene can form platelet-like single crystals with a thickness on the order 10–20 nm when crystallized from a dilute solution. The crystal shape can be more complex for other polymers, including hollow pyramids, spirals and multilayer dendritic structures.[1]
A very different process is precipitation; it uses a solvent which dissolves individual monomers but not the resulting polymer. When a certain degree of polymerization is reached, the polymerized and partially crystallized product precipitates out of the solution. The rate of crystallization can be monitored by a technique which selectively probes the dissolved fraction, such as nuclear magnetic resonance.[10]
The fraction of the ordered molecules in polymer is characterized by the degree of crystallinity, which typically ranges between 10 and 80%.[3]Higher values are only achieved in materials having small molecules, which are usually brittle, or in samples stored for long time at temperatures just under the melting point. The latter procedure is costly and is applied only in special cases.
Most methods of evaluating the degree of crystallinity assume a mixture of perfect crystalline and totally disordered areas; the transition areas are expected to amount to several percent. These methods include density measurement, differential scanning calorimetry (DSC), X-ray diffraction (XRD), infrared spectroscopy and nuclear magnetic resonance (NMR). The measured value depends on the method used, which is therefore quoted together with the degree of crystallinity.[3]
In addition to the above integral methods, the distribution of crystalline and amorphous regions can be visualized with microscopic techniques, such as polarized light microscopy and transmission electron microscopy).
Polymer | D | ρc | ρa |
---|---|---|---|
Nylon (PA66 and PA6) | 35–45 | 1.24 | 1.08 |
Polyoxymethylene (POM) | 70–80 | 1.54 | 1.28 |
Polyethylene terephthalate (PET) | 30–40 | 1.50 | 1.33 |
Polybutylene terephthalate (PBT) | 40–50 | – | – |
Polytetrafluoroethylene (PTFE) | 60–80 | 2.35 | 2.00 |
isotactic polypropylene | 70–80 | 0.95 | 0.85 |
atactic polypropylene | ~0 | – | – |
High-density polyethylene | 70–80 | 1.0 | 0.85 |
Low-density polyethylene | 45–55 | 1.0 | 0.85 |
Below their glass transition temperature, amorphous polymers are usually hard and brittle because of the low mobility of their molecules. Increasing the temperature induces molecular motion resulting in the typical rubber-elastic properties. A constant force applied to a polymer at temperatures above Tg results in a viscoelastic deformation, i.e., the polymer begins to creep. Heat resistance is thus given for amorphous polymers just below the glass transition temperature.[12]
Relatively strong intermolecular forces in semicrystalline polymers prevent softening even above the glass transition temperature. Their elastic modulus changes significantly only at high (melting) temperature.[3]It also depends on the degree of crystallinity: higher crystallinity results in a harder and more thermally stable, but also more brittle material, whereas the amorphous regions provide certain elasticity and impact resistance.[1][4] Another characteristic feature of semicrystalline polymers is strong anisotropy of their mechanical properties along the direction of molecular alignment and perpendicular to it.[13]
Plastics are viscoelastic materials meaning that under applied stress, their deformation increases with time (creep). The elastic properties of plastics are therefore distinguished according to the time scale of the testing to short-time behavior (such as tensile test which lasts minutes), shock loading, the behavior under long-term and static loading, as well as the vibration-induced stress.[14]
Semicrystalline polymers are usually opaque because of light scattering on the numerous boundaries between the crystalline and amorphous regions. The density of such boundaries is lower and thus the transparency is higher either for low (amorphous polymer) or high (crystalline) degree of crystallinity.[4] For example, atactic polypropylene is usually amorphous and transparent while syndiotactic polypropylene, which has crystallinity ~50%, is opaque.[15] Crystallinity also affects dyeing of polymers: crystalline polymers are more difficult to stain than amorphous ones because the dye molecules penetrate much easier through amorphous regions.[16]